kids encyclopedia robot

Decomposition facts for kids

Kids Encyclopedia Facts
DecayingPeachSmall
A decaying peach over six days, with each frame about 12 hours apart. The fruit shrivels and becomes covered with mould.

Decomposition, or rotting, is what happens to living things when they die. It also happens to organic material of any kind, such as foodstuffs. The reason it happens is that organic molecules are stores of building blocks and energy. Whatever breaks down organic material uses the energy and building blocks to reproduce itself.

One whole kingdom of living things does nothing except break down organic material: the fungi. Their life style is called 'saprophytic', because they break down and intake organic matter through their cell walls.

A large part of decomposition is done by microbes, especially bacteria. Also common is digestion of flesh by maggots. If insects lay eggs, maggots hatch and begin to feed on the body's tissues.

Lastly, decomposition can take place by inorganic processes. All organic materials break down over time because they are in higher energy states than ordinary inorganic materials.

Degradation products of
proteins, carbohydrates, and lipids
Proteins Carbohydrates Lipids
Proteoses, peptones, polypeptides, and amino acids Glucose Free fatty acids (saturated and unsaturated)
Phenolic substances and gases Organic acids and alcohols Salts of fatty acids
Organic acids and decarboxylation products Water, carbon dioxide Aldehydes and ketones
Nitrogen and phosphorus Gases Adipocere

Animal decomposition

Ants cleaning dead snake
Ants eating a dead snake

Decomposition begins at the moment of death, caused by two factors: autolysis, the breaking down of tissues by the body's own internal chemicals and enzymes, and putrefaction, the breakdown of tissues by bacteria. These processes release compounds that are the chief source of the unmistakably putrid odor of decaying animal tissue.

Prime decomposers are bacteria or fungi, though larger scavengers also play an important role in decomposition if the body is accessible to insects, mites and other animals. Additionally, soil animals are considered key regulators of decomposition at local scales but their role at larger scales is unresolved. The most important arthropods that are involved in the process include carrion beetles, mites, the flesh-flies (Sarcophagidae) and blow-flies (Calliphoridae), such as the green bottle flies seen in the summer. In North America, the most important non-insect animals that are typically involved in the process include mammal and bird scavengers, such as coyotes, dogs, wolves, foxes, rats, crows and vultures. Some of these scavengers also remove and scatter bones, which they ingest at a later time. Aquatic and marine environments have break-down agents that include bacteria, fish, crustaceans, fly larvae and other carrion scavengers.

Plant decomposition

Decomposition of plant matter occurs in many stages. It begins with leaching by water; the most easily lost and soluble carbon compounds are liberated in this process. Another early process is physical breakup or fragmentation of the plant material into smaller pieces, providing greater surface area for microbial colonization and attack. In smaller dead plants, this process is largely carried out by the soil invertebrate fauna, whereas in larger plants, primarily parasitic life-forms such as insects and fungi play a major role in breaking down matter, and are not assisted by numerous detritivore species.

Following this, the plant detritus (consisting of cellulose, hemicellulose, microbial products, and lignin) undergoes chemical alteration by microbes. Different types of compounds decompose at different rates. This is dependent on their chemical structure. For instance, lignin is a component of wood, which is relatively resistant to decomposition and can in fact only be decomposed by certain fungi, such as the black-rot fungi.

Wood decomposition is a complex process involving fungi which transport nutrients to the nutritionally scarce wood from outside environment. Because of this nutritional enrichment, the fauna of saproxylic insects may develop and, in turn, affect dead wood, contributing to decomposition and nutrient cycling in the forest floor. Lignin is one such remaining product of decomposing plants with a very complex chemical structure, causing the rate of microbial breakdown to slow. Warmth increases the speed of plant decay by roughly the same amount, regardless of the composition of the plant.

In most grassland ecosystems, natural damage from fire, insects that feed on decaying matter, termites, grazing mammals, and the physical movement of animals through the grass are the primary agents of breakdown and nutrient cycling, while bacteria and fungi play the main roles in further decomposition.

The chemical aspects of plant decomposition always involve the release of carbon dioxide. In fact, decomposition contributes over 90 percent of carbon dioxide released each year.

Food decomposition

A punnet of rotten peaches
A punnet of rotten peaches

The decomposition of food, either plant or animal, called spoilage in this context, is an important field of study within food science. Food decomposition can be slowed down by conservation. The spoilage of meat occurs, if the meat is untreated, in a matter of hours or days and results in the meat becoming unappetizing, poisonous or infectious. Spoilage is caused by the practically unavoidable infection and subsequent decomposition of meat by bacteria and fungi, which are borne by the animal itself, by the people handling the meat, and by their implements. Meat can be kept edible for a much longer time – though not indefinitely – if proper hygiene is observed during production and processing, and if appropriate food safety, food preservation and food storage procedures are applied.

Spoilage of food is attributed to contamination from microorganisms such as bacteria, molds and yeasts, along with natural decay of the food. These decomposition bacteria reproduce at rapid rates under conditions of moisture and preferred temperatures. When the proper conditions are lacking the bacteria may form spores which lurk until suitable conditions arise to continue reproduction.

Rate of decomposition

The rate of decomposition is governed by three sets of factors—the physical environment (temperature, moisture and soil properties), the quantity and quality of the dead material available to decomposers, and the nature of the microbial community itself.

Decomposition rates are low under very wet or very dry conditions. Decomposition rates are highest in damp, moist conditions with adequate levels of oxygen. Wet soils tend to become deficient in oxygen (this is especially true in wetlands), which slows microbial growth. In dry soils, decomposition slows as well, but bacteria continue to grow (albeit at a slower rate) even after soils become too dry to support plant growth. When the rains return and soils become wet, the osmotic gradient between the bacterial cells and the soil water causes the cells to gain water quickly. Under these conditions, many bacterial cells burst, releasing a pulse of nutrients. Decomposition rates also tend to be slower in acidic soils. Soils which are rich in clay minerals tend to have lower decomposition rates, and thus, higher levels of organic matter. The smaller particles of clay result in a larger surface area that can hold water. The higher the water content of a soil, the lower the oxygen content and consequently, the lower the rate of decomposition. Clay minerals also bind particles of organic material to their surface, making them less accessible to microbes. Soil disturbance like tilling increases decomposition by increasing the amount of oxygen in the soil and by exposing new organic matter to soil microbes.

The quality and quantity of the material available to decomposers is another major factor that influences the rate of decomposition. Substances like sugars and amino acids decompose readily and are considered labile. Cellulose and hemicellulose, which are broken down more slowly, are "moderately labile". Compounds which are more resistant to decay, like lignin or cutin, are considered recalcitrant. Litter with a higher proportion of labile compounds decomposes much more rapidly than does litter with a higher proportion of recalcitrant material. Consequently, dead animals decompose more rapidly than dead leaves, which themselves decompose more rapidly than fallen branches. As organic material in the soil ages, its quality decreases. The more labile compounds decompose quickly, leaving an increasing proportion of recalcitrant material. Microbial cell walls also contain recalcitrant materials like chitin, and these also accumulate as the microbes die, further reducing the quality of older soil organic matter.

Images for kids

See also

Kids robot.svg In Spanish: Descomposición para niños

kids search engine
Decomposition Facts for Kids. Kiddle Encyclopedia.